skip to main content


Search for: All records

Creators/Authors contains: "Caccamo, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep reinforcement learning (DRL) has demonstrated impressive success in solving complex control tasks by synthesizing control policies from data. However, the safety and stability of applying DRL to safety-critical systems remain a primary concern and challenging problem. To address the problem, we propose the Phy-DRL: a novel physics-model regulated deep reinforcement learning framework. The Phy-DRL is novel in two architectural designs: a physics-model-regulated reward and residual control, which integrates physics-model-based control and data-driven control. The concurrent designs enable the Phy-DRL to mathematically provable safety and stability guarantees. Finally, the effectiveness of the Phy-DRL is validated by an inverted pendulum system. Additionally, the experimental results demonstrate that the Phy-DRL features remarkably accelerated training and enlarged reward. 
    more » « less
  2. Nowadays, AI-based techniques, such as deep neural networks (DNNs), are widely deployed in autonomous systems for complex mission requirements (e.g., motion planning in robotics). However, DNNs-based controllers are typically very complex, and it is very hard to formally verify their correctness, potentially causing severe risks for safety-critical autonomous systems. In this paper, we propose a construction scheme for a so-called Safe-visor architecture to sandbox DNNs-based controllers. Particularly, we consider the construction under a stochastic game framework to provide a system-level safety guarantee which is robust to noises and disturbances. A supervisor is built to check the control inputs provided by a DNNs-based controller and decide whether to accept them. Meanwhile, a safety advisor is running in parallel to provide fallback control inputs in case the DNN-based controller is rejected. We demonstrate the proposed approaches on a quadrotor employing an unverified DNNs-based controller.

     
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  3. In today’s multiprocessor systems-on-a-chip (MPSoC), the shared memory subsystem is a known source of temporal interference. The problem causes logically independent cores to affect each other’s performance, leading to pessimistic worst-case execution time (WCET) analysis. One of the most practical techniques to mitigate interference is memory regulation via throttling. Traditional regulation schemes rely on a combination of timer and performance counter interrupts to be delivered and processed on the same cores running real-time workload. Unfortunately, to prevent excessive overhead, regulation can only be enforced at a millisecond-scale granularity. In this work, we present a novel regulation mechanism from outside the cores that monitors performance counters for the application core’s activity in main memory at a microsecond scale. The approach is fully transparent to the applications on the cores, and can be implemented using widely available on-chip debug facilities. The presented mechanism also allows a more complex composition of metrics to enact load-aware regulation. For instance, it allows redistributing unused bandwidth between cores while keeping the overall memory bandwidth of all cores below a given threshold. We implement our approach on a host of embedded platforms and carry out an in-depth evaluation on the Xilinx Zynq UltraScale+ ZCU102 platform using the SD-VBS. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Newly emerging multiprocessor system-on-a-chip (MPSoC) platforms provide hard processing cores with programmable logic (PL) for high-performance computing applications. In this article, we take a deep look into these commercially available heterogeneous platforms and show how to design mixed-criticality applications such that different processing components can be isolated to avoid contention on the shared resources such as last-level cache and main memory. Our approach involves software/hardware co-design to achieve isolation between the different criticality domains. At the hardware level, we use a scratchpad memory (SPM) with dedicated interfaces inside the PL to avoid conflicts in the main memory. At the software level, we employ a hypervisor to support cache-coloring such that conflicts at the shared L2 cache can be avoided. In order to move the tasks in/out of the SPM memory, we rely on a DMA engine and propose a new CPU-DMA co-scheduling policy, called Lazy Load, for which we also derive the response time analysis. The results of a case study on image processing demonstrate that the contention on the shared memory subsystem can be avoided when running with our proposed architecture. Moreover, comprehensive schedulability evaluations show that the newly proposed Lazy Load policy outperforms the existing CPU-DMA scheduling approaches and is effective in mitigating the main memory interference in our proposed architecture. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  5. We are witnessing a race to meet the ever-growing computation requirements of emerging AI applications to provide perception and control in autonomous vehicles — e.g., self-driving cars and UAVs. To remain competitive, vendors are packing more processing units (CPUs, programmable logic, GPUs, and hardware accelerators) into next-generation multiprocessor systems-on-a-chip (MPSoC). As a result, modern embedded platforms are achieving new heights in peak computational capacity. Unfortunately, however, the collateral and inevitable increase in complexity represents a major obstacle for the development of correct-by-design safety-critical real-time applications. Due to the ever-growing gap between fast-paced hardware evolution and comparatively slower evolution of real-time operating systems (RTOS), there is a need for real-time oriented full-platform management frameworks to complement traditional RTOS designs. In this work, we propose one such framework, namely the X-Stream framework, for the definition, synthesis, and analysis of real-time workloads targeting state-of-the-art accelerator-augmented embedded platforms. Our X-Stream framework is designed around two cardinal principles. First, computation and data movements are orchestrated to achieve predictability by design. For this purpose, iterative computation over large data chunks is divided into subsequent segments. These segments are then streamed leveraging the three-phase execution model (load, execute and unload). Second, the framework is workflow-centric: system designers can specify their workflow and the necessary code for workflow orchestration is automatically generated. In addition to automating the deployment of user-defined hardware-accelerated workloads, X-Stream supports the deployment of some computation segments on traditional CPUs. Finally, X-Stream allows the definition of real-time partitions. Each partition groups applications belonging to the same criticality level and that share the same set of hardware resources, with support for preemptive priority-driven scheduling. Conversely, freedom from interference for applications deployed in different partitions is guaranteed by design. We provide a full-system implementation that includes RTOS integration and showcase the proposed X-Stream framework on a Xilinx Ultrascale+ platform by focusing on a matrix-multiplication and addition kernel use-case. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Timing correctness is crucial in a multi-criticality real-time system, such as an autonomous driving system. It has been recently shown that these systems can be vulnerable to timing inference attacks, mainly due to their predictable behavioral patterns. Existing solutions like schedule randomization cannot protect against such attacks, often limited by the system’s real-time nature. This article presents “ SchedGuard++ ”: a temporal protection framework for Linux-based real-time systems that protects against posterior schedule-based attacks by preventing untrusted tasks from executing during specific time intervals. SchedGuard++ supports multi-core platforms and is implemented using Linux containers and a customized Linux kernel real-time scheduler. We provide schedulability analysis assuming the Logical Execution Time (LET) paradigm, which enforces I/O predictability. The proposed response time analysis takes into account the interference from trusted and untrusted tasks and the impact of the protection mechanism. We demonstrate the effectiveness of our system using a realistic radio-controlled rover platform. Not only is “ SchedGuard++ ” able to protect against the posterior schedule-based attacks, but it also ensures that the real-time tasks/containers meet their temporal requirements. 
    more » « less
  7. Perception of obstacles remains a critical safety concern for autonomous vehicles. Real-world collisions have shown that the autonomy faults leading to fatal collisions originate from obstacle existence detection. Open source autonomous driving implementations show a perception pipeline with complex interdependent Deep Neural Networks. These networks are not fully verifiable, making them unsuitable for safety-critical tasks. In this work, we present a safety verification of an existing LiDAR based classical obstacle detection algorithm. We establish strict bounds on the capabilities of this obstacle detection algorithm. Given safety standards, such bounds allow for determining LiDAR sensor properties that would reliably satisfy the standards. Such analysis has as yet been unattainable for neural network based perception systems. We provide a rigorous analysis of the obstacle detection s 
    more » « less
  8. The ever-increasing demand for high-performance in the time-critical embedded domain has pushed the adoption of powerful yet unpredictable heterogeneous Systems-on-a-Chip. The shared memory subsystem, which is known to be a major source of unpredictability, has been extensively studied, and many mitigation techniques have been proposed. Among them, performance-counter-based regulation techniques have seen widespread adoption. However, the problem of combining performance-based regulation with time-domain isolation has not received enough attention. In this article, we discuss our current work-in-progress on SHCReg (Software Hardware Co-design Regulator). First, we assess the limitations and benefits of combined CPU and memory budgeting. Next, we outline a full-stack hardware/software co-design architecture that aims at improving the interplay between CPU and memory isolation for mixed-criticality tasks running on the same core. 
    more » « less
  9. Many cyber-physical systems are offloading computation-heavy programs to hardware accelerators (e.g., GPU and TPU) to reduce execution time. These applications will self-suspend between offloading data to the accelerators and obtaining the returned results. Previous efforts have shown that self-suspending tasks can cause scheduling anomalies, but none has examined inter-task communication. This paper aims to explore self-suspending tasks' data chain latency with periodic activation and asynchronous message passing. We first present the cause for suspension-induced delays and worst-case latency analysis. We then propose a rule for utilizing the hardware co-processors to reduce data chain latency and schedulability analysis. Simulation results show that the proposed strategy can improve overall latency while preserving system schedulability. 
    more » « less